

MRI Coil-combine Toolbox

Introduction

The MRI Coil-reconstruct Toolbox, MCT, is a small toolbox for combining the channels of a multi-channel MRI acquisition.
Where possible, this toolbox uses GPU accelerated routines to speed-up the processing.
For example, the weights of the STARC (STAbility-weighted Rf-coil Combination) reconstruction model are fitted using the GPU or using multi-threaded CPU.
At the moment MCT supports rSoS (root Sum Of Squares), rCovSoS (same as SoS but than with additional usage of a noise covariance matrix) and STARC.

Beta version notice

Please note that this software is still in beta and that the user interface may change over versions.

Summary

	features multiple coil combine / reconstruction methods

	command line and python interface

	GPU/multicore-CPU accelerated STARC

	Free Open Source Software: LGPL v3 license

	Python and OpenCL based

	Full documentation: https://mct.readthedocs.io/

	Project home: https://github.com/cbclab/MCT

	Uses the GitLab workflow [https://docs.gitlab.com/ee/workflow/gitlab_flow.html]

	Tags: MRI, coil-reconstruct, image reconstruction, opencl, python

Data reconstruction

This software contains various reconstruction methods that can be used to combine your channels into one (or more) volumes.
Not all reconstruction methods may be applicable to your data, for example the STARC [1] method only works when dealing with fMRI data.

Console

To reconstruct your data using the command line, after installation you can use:

$ mct-reconstruct <method> {0..15}.nii

Where method at the moment is one of “rSoS”, “rCovSoS” or “STARC”.
Some methods require more information to combine the channels, please see the full documentation for this.

If you only want to use certain volumes of your data, use the “–volumes” or “-v” switch on the command line:

$ mct-reconstruct <method> {0..15}.nii -v odd

To use (for example) only the odd volumes. Available options are “odd”, “even” or a list of indices, such as “0 2 4 5” (space separated).

Python

It is also possible to reconstruct your data using the Python API, for example:

from mct.reconstruction_methods import rSoS, rCovSoS, STARC

input_path = '/data/'
output_path = '/data/output/'
nmr_channels = 16
input_filenames = [input_path + str(ind)
 for ind in range(nmr_channels)]

method = rSoS(input_filenames)
method.reconstruct(output_path, volumes='odd')

This would reconstruct your data using rSoS using only the odd volumes.

References:

	Simple approach to improve time series fMRI stability: STAbility-weighted Rf-coil Combination (STARC), L. Huber et al. ISMRM 2017 abstract #0586.

Quick installation guide

The basic requirements for MCT are:

	Python 3.x (recommended) or Python 2.7

	OpenCL 1.2 (or higher) support in GPU driver or CPU runtime

Linux

For Ubuntu >= 16 you can use:

	sudo add-apt-repository ppa:robbert-harms/cbclab

	sudo apt-get update

	sudo apt-get install python3-mct

For Debian users and Ubuntu < 16 users, install MDT with:

	sudo apt-get install python3 python3-pip python3-pyopencl python3-numpy python3-nibabel python3-pyqt5 python3-matplotlib python3-yaml python3-argcomplete libpng-dev libfreetype6-dev libxft-dev

	sudo pip3 install mct

Note that python3-nibabel may need NeuroDebian to be available on your machine. An alternative is to use pip3 install nibabel instead.

Windows

The installation on Windows is a little bit more complex and the following is only a quick reference guide.
To save duplication of information and since this package depends on MDT and MOT, the complete install instructions can be copied from
the MDT documentation [https://maastrichtdiffusiontoolbox.readthedocs.org].
After following that guide, installation of MCT is simply done using pip install mct.
The quick overview is:

	Install Anaconda Python 3.5

	Install MOT using the guide at https://mot.readthedocs.io

	Open an Anaconda shell and type: pip install mct

Mac

	Install Anaconda Python 3.5

	Open a terminal and type: pip install mct

Please note that Mac support is experimental due to the unstable nature of the OpenCL drivers in Mac, that is, users running MDT with the GPU as selected device may experience crashes.
Running MDT in the CPU seems to work though.

For more information and full installation instructions please see the documentation of the MDT package https://maastrichtdiffusiontoolbox.readthedocs.org

Roadmap

	Add a few more reconstruction methods like:

	Roemer

	GRAPPA

	SENSE

	Improve the data handling and memory usage.

Changelog

Changelog

v0.2.10 (2018-10-24)

	Rebased against the latest MOT and MDT versions.

v0.2.9 (2018-08-23)

	Following changes in MOT.

v0.2.8 (2018-08-17)

	Removed redundant super arguments.

	Following changes in MOT and MDT.

v0.2.7 (2018-08-02)

	Regression fix.

v0.2.6 (2018-08-02)

	Following changes in MOT.

	Removed six as a dependency.

v0.2.5 (2018-07-17)

	Updated makefile to use twine for uploading to PyPi.

v0.2.4 (2018-05-03)

	Following changes in MOT.

v0.2.3 (2018-04-11)

	Following changes in MOT.

v0.2.2 (2018-04-09)

	Following changes in MOT and MDT.

v0.2.1 (2018-04-04)

Added

	Adds post-optimization transformation to STARC.

Changed

	Updates following the changes in MOT.

Other

	Merge branch ‘master’ of github.com:cbclab/MCT.

	Version bump.

	Following changes in MOT.

v0.2 (2017-09-22)

Added

	Adds rCovSoS, improvements to rSoS. Adds calculation method for calculating the noise covariance matrix.

	Adds the rCovSoS method.

	Adds a split volume script to split single volumes into channels.

Changed

	Updates to the comments.

	Changed the whole restructiring pipelines to make room for GRAPPA and SENSE.

Other

	Prepared next release. Added a volumes switch to the reconstruction method.

	Small refactoring in the API, made the channels a constructor parameter.

	Merge branch ‘master’ of https://github.com/cbclab/MCT.

	Reverted the data loading again. This version uses more memory.

	Processing version with different kind of memory loading.

	Removed the multiprocessing in favor of single threaded data loading. It is more robust.

	Project rename.

v0.1.1 (2017-09-12)

Added

	Adds cl-device index flag and max batch size flag to the mct-reconstruct CLI.

Other

	Prepared next release.

v0.1.0 (2017-09-12)

Added

	Adds changelog.

Changed

	Updates to docs.

	Updates to docs.

	Updates to docs.

	Updates to docs.

	Updates to readme.

Other

	Small update to docs.

	Small update to docs.

	Prepared for first release.

	First public release.

Developers

The MRI Coil-combine Toolbox is a coil-combine toolbox meant for MRI reconstruction.
Software development by Robbert Harms, under the (Phd) supervision of Alard Roebroeck, at Maastricht University.

List of contributors:

	
	Robbert Harms

	
	Lead developer

	
	Alard Roebroeck

	
	Phd. supervision

	
	Francisco Fritz

	
	Quality control

	
	Sriranga Kashyap

	
	Work on STARC, quality control

 Python Module Index

 c |
 m |
 r |
 u

 		 	

 		
 c	

 	[image: -]
 	
 mct.cli_scripts	

 	
 	
 mct.cli_scripts.mct_calculate_noise_covariance_matrix	

 	
 	
 mct.cli_scripts.mct_calculate_tnsr	

 	
 	
 mct.cli_scripts.mct_combine_weighted_sum	

 	
 	
 mct.cli_scripts.mct_list_devices	

 	
 	
 mct.cli_scripts.mct_list_methods	

 	
 	
 mct.cli_scripts.mct_method_info	

 	
 	
 mct.cli_scripts.mct_reconstruct	

 	
 	
 mct.cli_scripts.mct_split_volumes	

 	
 	
 mct.components_loader	

 		 	

 		
 m	

 	
 	
 mct	

 		 	

 		
 r	

 	
 	
 mct.reconstruction	

 	[image: -]
 	
 mct.reconstruction_methods	

 	
 	
 mct.reconstruction_methods.rCovSoS	

 	
 	
 mct.reconstruction_methods.rSoS	

 	
 	
 mct.reconstruction_methods.STARC	

 		 	

 		
 u	

 	
 	
 mct.utils	

Index

 C
 | G
 | L
 | M
 | R
 | S
 | U

C

 	
 	calculate_noise_covariance_matrix() (in module mct.utils)

 	calculate_tsnr() (in module mct.utils)

 	combine_weighted_sum() (in module mct.utils)

 	
 	command_line_info (mct.reconstruction.ReconstructionMethod attribute)

 	(mct.reconstruction_methods.STARC.STARC attribute)

 	(mct.reconstruction_methods.rCovSoS.rCovSoS attribute)

 	(mct.reconstruction_methods.rSoS.rSoS attribute)

G

 	
 	get_cl_devices() (in module mct.utils)

 	get_doc_arg_parser() (in module mct.cli_scripts.mct_calculate_noise_covariance_matrix)

 	(in module mct.cli_scripts.mct_calculate_tnsr)

 	(in module mct.cli_scripts.mct_combine_weighted_sum)

 	(in module mct.cli_scripts.mct_list_devices)

 	(in module mct.cli_scripts.mct_list_methods)

 	(in module mct.cli_scripts.mct_method_info)

 	(in module mct.cli_scripts.mct_reconstruct)

 	(in module mct.cli_scripts.mct_split_volumes)

 	
 	get_input_file() (in module mct.cli_scripts.mct_split_volumes)

 	get_input_files() (in module mct.cli_scripts.mct_combine_weighted_sum)

 	(in module mct.cli_scripts.mct_reconstruct)

 	get_keyword_args() (in module mct.cli_scripts.mct_reconstruct)

 	get_mot_config_context() (in module mct.utils)

 	get_reconstruction_method_class() (in module mct.components_loader)

 	get_starc_objective_func() (in module mct.reconstruction_methods.STARC)

L

 	
 	list_reconstruction_methods() (in module mct.components_loader)

 	
 	load_nifti() (in module mct.utils)

 	load_reconstruction_method() (in module mct.components_loader)

M

 	
 	mct (module)

 	mct.cli_scripts (module)

 	mct.cli_scripts.mct_calculate_noise_covariance_matrix (module)

 	mct.cli_scripts.mct_calculate_tnsr (module)

 	mct.cli_scripts.mct_combine_weighted_sum (module)

 	mct.cli_scripts.mct_list_devices (module)

 	mct.cli_scripts.mct_list_methods (module)

 	mct.cli_scripts.mct_method_info (module)

 	
 	mct.cli_scripts.mct_reconstruct (module)

 	mct.cli_scripts.mct_split_volumes (module)

 	mct.components_loader (module)

 	mct.reconstruction (module)

 	mct.reconstruction_methods (module)

 	mct.reconstruction_methods.rCovSoS (module)

 	mct.reconstruction_methods.rSoS (module)

 	mct.reconstruction_methods.STARC (module)

 	mct.utils (module)

R

 	
 	rCovSoS (class in mct.reconstruction_methods.rCovSoS)

 	reconstruct() (mct.reconstruction.ReconstructionMethod method)

 	(mct.reconstruction.SliceBySliceReconstructionMethod method)

 	
 	ReconstructionMethod (class in mct.reconstruction)

 	rSoS (class in mct.reconstruction_methods.rSoS)

S

 	
 	SliceBySliceReconstructionMethod (class in mct.reconstruction)

 	
 	split_write_volumes() (in module mct.utils)

 	STARC (class in mct.reconstruction_methods.STARC)

U

 	
 	UnzippedNiftis (class in mct.utils)

MRI Coil-combine Toolbox

	Introduction
	Summary

	Data reconstruction

	Quick installation guide

	Roadmap

MRI Coil-combine Toolbox

	Introduction
	Summary

	Data reconstruction

	Quick installation guide

	Roadmap

mct.cli_scripts package

Submodules

mct.cli_scripts.mct_calculate_noise_covariance_matrix module

Obtain the noise covariance matrix from noise adjustment (noiseadj) data, 2D, 3D or 4D noise volumes obtained by imaging at 0 voltage.

This is necessary if you want to do rCovSos or Roemer reconstruction in your data. The covariance matrix is a complex matrix with square size n, where n is the number of channels of the coil
used to acquire your data. IT IS IMPORTANT that the order of the channels in your data IS the same order of the channels in the covariance noise matrix.

This will overwrite the output file if it exists.

	
mct.cli_scripts.mct_calculate_noise_covariance_matrix.get_doc_arg_parser()

	

mct.cli_scripts.mct_calculate_tnsr module

Calculate the tSNR of your timeseries.

By default this will calculate the tSNR on the last axis of the input array.

The tSNR is defined as the mean(data) / std(data).

	
mct.cli_scripts.mct_calculate_tnsr.get_doc_arg_parser()

	

mct.cli_scripts.mct_combine_weighted_sum module

Combine all the coil given some weights.

This will reconstruct the channels by summing the separate channels multiplied by the given weights.

	
mct.cli_scripts.mct_combine_weighted_sum.get_doc_arg_parser()

	

	
mct.cli_scripts.mct_combine_weighted_sum.get_input_files(input_files_listing, base_dir)

	

mct.cli_scripts.mct_list_devices module

This script prints information about the available devices on your computer.

	
mct.cli_scripts.mct_list_devices.get_doc_arg_parser()

	

mct.cli_scripts.mct_list_methods module

List the available reconstruction methods.

This lists the methods that are available in the mct-reconstruct command.

To view more information about a method use the mct-method-info command.

	
mct.cli_scripts.mct_list_methods.get_doc_arg_parser()

	

mct.cli_scripts.mct_method_info module

Lists information about a method.

This outputs the documentation of the desired method.

	
mct.cli_scripts.mct_method_info.get_doc_arg_parser()

	

mct.cli_scripts.mct_reconstruct module

Reconstruct your images using the desired method.

	
mct.cli_scripts.mct_reconstruct.get_doc_arg_parser()

	

	
mct.cli_scripts.mct_reconstruct.get_input_files(input_files_listing, base_dir)

	

	
mct.cli_scripts.mct_reconstruct.get_keyword_args(kwargs, base_dir)

	

mct.cli_scripts.mct_split_volumes module

Split the volumes on the given axis.

Since the reconstruction method requires you to have one nifti file per channel, you need to split it if you have all your channels in one volume.

The axis are indexed zero-based. To use the last dimension use -1. By default it will split on the last dimension.

	
mct.cli_scripts.mct_split_volumes.get_doc_arg_parser()

	

	
mct.cli_scripts.mct_split_volumes.get_input_file(input_file, base_dir)

	

Module contents

mct.reconstruction_methods package

Submodules

mct.reconstruction_methods.STARC module

	
class mct.reconstruction_methods.STARC.STARC(channels, x0=None, cl_device_ind=None, **kwargs)

	Bases: mct.reconstruction.SliceBySliceReconstructionMethod

Reconstruct the input using the STARC method.

	Parameters

	
	channels (list) – the list of input nifti files, one for each channel element. Every nifti file
should be a 4d matrix with on the 4th dimension all the time series. The length of this list
should equal the number of input channels.

	x0 (ndarray or str) – optional, the set of weights to use as a starting point for the fitting routine.

	cl_device_ind (int or list of int) – the list of indices into mct.utils.get_cl_devices() that you want
to use for the OpenCL based optimization.

	
command_line_info = '\nThe STARC (STAbility-weighted Rf-coil Combination) method [1] reconstructs EPI acquisitions using a weighted sum of the input channels. The weights are chosen such that the reconstruction has optimal tSNR.\n\nRequired args:\n None\n\nOptional keyword args:\n starting_points="<nifti_file>" - the starting point for the optimization routine\n\nReferences:\n * Simple approach to improve time series fMRI stability: STAbility-weighted Rf-coil Combination (STARC), L. Huber et al. ISMRM 2017 abstract #0586.\n'

	

	
mct.reconstruction_methods.STARC.get_starc_objective_func(voxel_data)

	Create the STARC objective function used by MOT.

This model maximizes the tSNR (tSNR = mean(time_series') / std(time_series')) by minimizing 1/tSNR, or, in
other words by minimizing std(time_series') / mean(time_series') where time_series' is given by
the weighted sum of the provided time series over the channels.

The model parameters are a set of weights with, for every voxel, one weight per coil element. The weights are
constrained to be between [0, 1] as such that the sum of the weights equals one.

Model output is an ndarray (nmr_voxels, nmr_channels) holding the optimized weights for each of the voxels.

	Parameters

	voxel_data (ndarray) – a 3d matrix with (nmr_voxels, nmr_volumes, nmr_channels).

mct.reconstruction_methods.rCovSoS module

	
class mct.reconstruction_methods.rCovSoS.rCovSoS(channels, covariance_noise_matrix, **kwargs)

	Bases: mct.reconstruction.SliceBySliceReconstructionMethod

Instantiate the rCovSos method.

This will do a cholesky decomposition on the input covariance noise matrix, inverts it and takes the
transpose. We then take per voxel the dot product of the signals with this resulting matrix.

	Parameters

	
	channels (list) – the list of input nifti files, one for each channel element. Every nifti file
should be a 4d matrix with on the 4th dimension all the time series. The length of this list
should equal the number of input channels.

	covariance_noise_matrix (str or ndarray) – the corresponding noise matrix to use. If a string is given it is
supposed to be a nifti file path.

	
command_line_info = '\nRoot of the Covariance Sum Of Squares reconstruction [Triantafyllou 2016 and Pruesmann 2008].\n\nRequired args:\n Covariance noise matrix (complex square matrix with dimension (N, N) with N equal to the number of channels)\n\nOptional keyword args:\n None\n'

	

mct.reconstruction_methods.rSoS module

	
class mct.reconstruction_methods.rSoS.rSoS(channels, **kwargs)

	Bases: mct.reconstruction.SliceBySliceReconstructionMethod

Create a basic reconstruction method initialized with the given data and settings.

	Parameters

	
	channels (list) – the list of input nifti files, one for each channel element. Every nifti file
should be a 4d matrix with on the 4th dimension the time series. The length of this list
equals the number of channels.

	slicing_axis (int) – the (x,y,z) axis over which we will loop to reconstruct the volumes. 0=x, 1=y, 2=z.

	
command_line_info = '\nTypical root Sum Of Squares reconstruction.\n\nRequired args:\n None\n\nOptional keyword args:\n None\n'

	

Module contents

mct package

Subpackages

	mct.cli_scripts package
	Submodules

	mct.cli_scripts.mct_calculate_noise_covariance_matrix module

	mct.cli_scripts.mct_calculate_tnsr module

	mct.cli_scripts.mct_combine_weighted_sum module

	mct.cli_scripts.mct_list_devices module

	mct.cli_scripts.mct_list_methods module

	mct.cli_scripts.mct_method_info module

	mct.cli_scripts.mct_reconstruct module

	mct.cli_scripts.mct_split_volumes module

	Module contents

	mct.reconstruction_methods package
	Submodules

	mct.reconstruction_methods.STARC module

	mct.reconstruction_methods.rCovSoS module

	mct.reconstruction_methods.rSoS module

	Module contents

Submodules

mct.components_loader module

	
mct.components_loader.get_reconstruction_method_class(method_name)

	Load the class of the requested reconstruction method without instantiation.

	Parameters

	method_name (str) – the name of the reconstruction method to load

	Returns

	the class of the requested reconstruction method

	Return type

	type[mct.processing.ReconstructionMethod]

	Raises

	ValueError – if the requested method could not be found

	
mct.components_loader.list_reconstruction_methods()

	Get a list of the reconstruction methods by name.

	Returns

	the list of reconstruction methods

	Return type

	list[str]

	
mct.components_loader.load_reconstruction_method(method_name, *args, **kwargs)

	Load the requested reconstruction method as an object.

	Parameters

	
	method_name (str) – the name of the reconstruction method to load

	*args – passed to the constructor of the requested method

	**kwargs – passed to the constructor of the requested method

	Returns

	the class of the requested reconstruction method

	Return type

	mct.processing.ReconstructionMethod

	Raises

	ValueError – if the requested method could not be found

mct.reconstruction module

	
class mct.reconstruction.ReconstructionMethod

	Bases: object

A reconstruction method reconstructs volume(s) from multiple channels.

	
command_line_info = '\n No info defined for this method.\n '

	

	
reconstruct(output_directory, volumes=None)

	Reconstruct the given channels and place the result in a subdirectory in the given directory.

	Parameters

	
	output_directory (str) – the location for the output files

	volumes (list of int) – the indices of the volume we want to reconstruct (0-based).

	Returns

	the set of results from this reconstruction method

	Return type

	dict

	
class mct.reconstruction.SliceBySliceReconstructionMethod(channels, **kwargs)

	Bases: mct.reconstruction.ReconstructionMethod

Create a basic reconstruction method initialized with the given data and settings.

	Parameters

	
	channels (list) – the list of input nifti files, one for each channel element. Every nifti file
should be a 4d matrix with on the 4th dimension the time series. The length of this list
equals the number of channels.

	slicing_axis (int) – the (x,y,z) axis over which we will loop to reconstruct the volumes. 0=x, 1=y, 2=z.

	
reconstruct(output_directory, volumes=None)

	Reconstruct the given channels and place the result in a subdirectory in the given directory.

	Parameters

	
	output_directory (str) – the location for the output files

	volumes (list of int) – the indices of the volume we want to reconstruct (0-based).

	Returns

	the set of results from this reconstruction method

	Return type

	dict

mct.utils module

	
class mct.utils.UnzippedNiftis(input_filenames, tmp_dir)

	Bases: collections.abc.Sequence

Given a list of nifti filenames, this sequence will expose them as (unzipped) nibabel nifti files.

That is, each element of this sequence is a loaded nifti file, loaded using load_nifti(file_name).
If one or more of the input niftis are zipped, this class will unzip them to the temporary location
and then exposes those as the opened nifti files. At deconstruction, the unzipped niftis will be removed.

	Parameters

	
	input_filenames (list of str) – the list of input filenames

	tmp_dir (str) – the location for storing unzipped versions of zipped nifti files

	
mct.utils.calculate_noise_covariance_matrix(input_data, normalize=False)

	Obtain noise covariance matrix from raw data.

The input data (the raw data) is expected to be in complex k-space or x-space.

This function supports 1d, 2d, 3d noise volumes as input and assumes that the noise data of the channels are in the
last dimension.

	Parameters

	
	input_data (str) – the input data

	normalise (bool) – If True, then the calculated noise matrix will be normalised.

	Returns

	a square matrix of the number of channels

	Return type

	ndarray

	
mct.utils.calculate_tsnr(data, axis=-1)

	Calculate the tSNR of the given data.

By default this will calculate the tSNR on the last axis of the input array. The tSNR is defined as the
mean(data) / std(data).

	Parameters

	
	data (ndarray) – the data we want to calculate the tSNR off

	axis (int) – the axis on which to compute the tSNR

	
mct.utils.combine_weighted_sum(input_channels, weights, output_filename)

	Combine all the coils using the given weights.

	Parameters

	
	input_channels (list of str) – the list with the input channel filenames

	weights (str or ndarray) – the weights to use for the reconstruction.

	output_filename (str) – the output filename

	
mct.utils.get_cl_devices()

	Get a list of all CL devices in the system.

The indices of the devices can be used in the model fitting/sample functions for ‘cl_device_ind’.

	Returns

	A list of CLEnvironments, one for each device in the system.

	
mct.utils.get_mot_config_context(cl_device_ind)

	Get the configuration context that uses the given devices by index.

	Parameters

	cl_device_ind (int or list of int) – the device index or a list of device indices

	Returns

	the configuration action to use

	Return type

	mot.configuration.ConfigAction [https://mot.readthedocs.io/en/latest/mot.html#mot.configuration.ConfigAction]

	
mct.utils.load_nifti(nifti_volume)

	Load and return a nifti file.

This will apply path resolution if a filename without extension is given. See the function
nifti_filepath_resolution() for details.

	Parameters

	nifti_volume (string) – The filename of the volume to use.

	Returns

	nibabel.spatialimages.SpatialImage

	
mct.utils.split_write_volumes(input_file, output_dir, axis=-1)

	Split and write the given input volume to separate nifti files.

	Parameters

	
	input_file (str) – the input nifti file to split

	output_dir (str) – the output directory, this will write the split volumes to that directory
with the same basename as the input file, with the slice index appended

	axis (int) – the axis to split on

Module contents

mct

	mct package
	Subpackages
	mct.cli_scripts package
	Submodules

	mct.cli_scripts.mct_calculate_noise_covariance_matrix module

	mct.cli_scripts.mct_calculate_tnsr module

	mct.cli_scripts.mct_combine_weighted_sum module

	mct.cli_scripts.mct_list_devices module

	mct.cli_scripts.mct_list_methods module

	mct.cli_scripts.mct_method_info module

	mct.cli_scripts.mct_reconstruct module

	mct.cli_scripts.mct_split_volumes module

	Module contents

	mct.reconstruction_methods package
	Submodules

	mct.reconstruction_methods.STARC module

	mct.reconstruction_methods.rCovSoS module

	mct.reconstruction_methods.rSoS module

	Module contents

	Submodules

	mct.components_loader module

	mct.reconstruction module

	mct.utils module

	Module contents

Introduction

The MRI Coil-reconstruct Toolbox, MCT, is a small toolbox for combining the channels of a multi-channel MRI acquisition.
Where possible, this toolbox uses GPU accelerated routines to speed-up the processing.
For example, the weights of the STARC (STAbility-weighted Rf-coil Combination) reconstruction model are fitted using the GPU or using multi-threaded CPU.
At the moment MCT supports rSoS (root Sum Of Squares), rCovSoS (same as SoS but than with additional usage of a noise covariance matrix) and STARC.

Beta version notice

Please note that this software is still in beta and that the user interface may change over versions.

Summary

	features multiple coil combine / reconstruction methods

	command line and python interface

	GPU/multicore-CPU accelerated STARC

	Free Open Source Software: LGPL v3 license

	Python and OpenCL based

	Full documentation: https://mct.readthedocs.io/

	Project home: https://github.com/cbclab/MCT

	Uses the GitLab workflow [https://docs.gitlab.com/ee/workflow/gitlab_flow.html]

	Tags: MRI, coil-reconstruct, image reconstruction, opencl, python

Data reconstruction

This software contains various reconstruction methods that can be used to combine your channels into one (or more) volumes.
Not all reconstruction methods may be applicable to your data, for example the STARC [1] method only works when dealing with fMRI data.

Console

To reconstruct your data using the command line, after installation you can use:

$ mct-reconstruct <method> {0..15}.nii

Where method at the moment is one of “rSoS”, “rCovSoS” or “STARC”.
Some methods require more information to combine the channels, please see the full documentation for this.

If you only want to use certain volumes of your data, use the “–volumes” or “-v” switch on the command line:

$ mct-reconstruct <method> {0..15}.nii -v odd

To use (for example) only the odd volumes. Available options are “odd”, “even” or a list of indices, such as “0 2 4 5” (space separated).

Python

It is also possible to reconstruct your data using the Python API, for example:

from mct.reconstruction_methods import rSoS, rCovSoS, STARC

input_path = '/data/'
output_path = '/data/output/'
nmr_channels = 16
input_filenames = [input_path + str(ind)
 for ind in range(nmr_channels)]

method = rSoS(input_filenames)
method.reconstruct(output_path, volumes='odd')

This would reconstruct your data using rSoS using only the odd volumes.

References:

	Simple approach to improve time series fMRI stability: STAbility-weighted Rf-coil Combination (STARC), L. Huber et al. ISMRM 2017 abstract #0586.

Quick installation guide

The basic requirements for MCT are:

	Python 3.x (recommended) or Python 2.7

	OpenCL 1.2 (or higher) support in GPU driver or CPU runtime

Linux

For Ubuntu >= 16 you can use:

	sudo add-apt-repository ppa:robbert-harms/cbclab

	sudo apt-get update

	sudo apt-get install python3-mct

For Debian users and Ubuntu < 16 users, install MDT with:

	sudo apt-get install python3 python3-pip python3-pyopencl python3-numpy python3-nibabel python3-pyqt5 python3-matplotlib python3-yaml python3-argcomplete libpng-dev libfreetype6-dev libxft-dev

	sudo pip3 install mct

Note that python3-nibabel may need NeuroDebian to be available on your machine. An alternative is to use pip3 install nibabel instead.

Windows

The installation on Windows is a little bit more complex and the following is only a quick reference guide.
To save duplication of information and since this package depends on MDT and MOT, the complete install instructions can be copied from
the MDT documentation [https://maastrichtdiffusiontoolbox.readthedocs.org].
After following that guide, installation of MCT is simply done using pip install mct.
The quick overview is:

	Install Anaconda Python 3.5

	Install MOT using the guide at https://mot.readthedocs.io

	Open an Anaconda shell and type: pip install mct

Mac

	Install Anaconda Python 3.5

	Open a terminal and type: pip install mct

Please note that Mac support is experimental due to the unstable nature of the OpenCL drivers in Mac, that is, users running MDT with the GPU as selected device may experience crashes.
Running MDT in the CPU seems to work though.

For more information and full installation instructions please see the documentation of the MDT package https://maastrichtdiffusiontoolbox.readthedocs.org

Roadmap

	Add a few more reconstruction methods like:

	Roemer

	GRAPPA

	SENSE

	Improve the data handling and memory usage.

Introduction

The MRI Coil-reconstruct Toolbox, MCT, is a small toolbox for combining the channels of a multi-channel MRI acquisition.
Where possible, this toolbox uses GPU accelerated routines to speed-up the processing.
For example, the weights of the STARC (STAbility-weighted Rf-coil Combination) reconstruction model are fitted using the GPU or using multi-threaded CPU.
At the moment MCT supports rSoS (root Sum Of Squares), rCovSoS (same as SoS but than with additional usage of a noise covariance matrix) and STARC.

Beta version notice

Please note that this software is still in beta and that the user interface may change over versions.

Summary

	features multiple coil combine / reconstruction methods

	command line and python interface

	GPU/multicore-CPU accelerated STARC

	Free Open Source Software: LGPL v3 license

	Python and OpenCL based

	Full documentation: https://mct.readthedocs.io/

	Project home: https://github.com/cbclab/MCT

	Uses the GitLab workflow [https://docs.gitlab.com/ee/workflow/gitlab_flow.html]

	Tags: MRI, coil-reconstruct, image reconstruction, opencl, python

Data reconstruction

This software contains various reconstruction methods that can be used to combine your channels into one (or more) volumes.
Not all reconstruction methods may be applicable to your data, for example the STARC [1] method only works when dealing with fMRI data.

Console

To reconstruct your data using the command line, after installation you can use:

$ mct-reconstruct <method> {0..15}.nii

Where method at the moment is one of “rSoS”, “rCovSoS” or “STARC”.
Some methods require more information to combine the channels, please see the full documentation for this.

If you only want to use certain volumes of your data, use the “–volumes” or “-v” switch on the command line:

$ mct-reconstruct <method> {0..15}.nii -v odd

To use (for example) only the odd volumes. Available options are “odd”, “even” or a list of indices, such as “0 2 4 5” (space separated).

Python

It is also possible to reconstruct your data using the Python API, for example:

from mct.reconstruction_methods import rSoS, rCovSoS, STARC

input_path = '/data/'
output_path = '/data/output/'
nmr_channels = 16
input_filenames = [input_path + str(ind)
 for ind in range(nmr_channels)]

method = rSoS(input_filenames)
method.reconstruct(output_path, volumes='odd')

This would reconstruct your data using rSoS using only the odd volumes.

References:

	Simple approach to improve time series fMRI stability: STAbility-weighted Rf-coil Combination (STARC), L. Huber et al. ISMRM 2017 abstract #0586.

Quick installation guide

The basic requirements for MCT are:

	Python 3.x (recommended) or Python 2.7

	OpenCL 1.2 (or higher) support in GPU driver or CPU runtime

Linux

For Ubuntu >= 16 you can use:

	sudo add-apt-repository ppa:robbert-harms/cbclab

	sudo apt-get update

	sudo apt-get install python3-mct

For Debian users and Ubuntu < 16 users, install MDT with:

	sudo apt-get install python3 python3-pip python3-pyopencl python3-numpy python3-nibabel python3-pyqt5 python3-matplotlib python3-yaml python3-argcomplete libpng-dev libfreetype6-dev libxft-dev

	sudo pip3 install mct

Note that python3-nibabel may need NeuroDebian to be available on your machine. An alternative is to use pip3 install nibabel instead.

Windows

The installation on Windows is a little bit more complex and the following is only a quick reference guide.
To save duplication of information and since this package depends on MDT and MOT, the complete install instructions can be copied from
the MDT documentation [https://maastrichtdiffusiontoolbox.readthedocs.org].
After following that guide, installation of MCT is simply done using pip install mct.
The quick overview is:

	Install Anaconda Python 3.5

	Install MOT using the guide at https://mot.readthedocs.io

	Open an Anaconda shell and type: pip install mct

Mac

	Install Anaconda Python 3.5

	Open a terminal and type: pip install mct

Please note that Mac support is experimental due to the unstable nature of the OpenCL drivers in Mac, that is, users running MDT with the GPU as selected device may experience crashes.
Running MDT in the CPU seems to work though.

For more information and full installation instructions please see the documentation of the MDT package https://maastrichtdiffusiontoolbox.readthedocs.org

Roadmap

	Add a few more reconstruction methods like:

	Roemer

	GRAPPA

	SENSE

	Improve the data handling and memory usage.

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 MRI Coil-combine Toolbox

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

